
Explain file generation can be partially automated by a

GENEXPLAIN <command>

command that creates a skeleton explain file and scans the source file <command>.java for
additional fill-in-the-blank information. Here's the literal skeleton file explain_skeleton.exp
generated by GENEXPLAIN with no <command> argument. Brace-delimited text reminds the
author of the "proper" explain file form.

The {command name} {command type}

{command name} <{positional parameter 1}> ... [{keyword parameter 1}=] ...

{action verb} {high-level command description}

Positional Parameters

{parameter} {labelless parameter description} [default is {default value}]

{PARAMETER} {labelled parameter description} [default is {default value}]

Keyword Parameters

{keyword}= {parameter description} [default is {default value}]

Command Switches

In addition to system-defined command switches accepted by all NeXt-Midas commands,
{command name} recognizes the following command-specific switches:

/{switch} {state switch description} [default is {default state}]

/{switch}= {value switch description} [default is {default value}]

Messages

When executed from a macro or as a background task, {command name} processes the following
messages:

{msg ID} {message description}

{ID}=<{args}> {message description}

Methods

The following public methods are provided by the {command name} command object for direct access
from the NeXt-Midas command line using the <object ID>.<method name>({parameter list}) syntax:

{method}({parameter list}) {method description}

See Also

{related commands}

When GENEXPLAIN is given a <command> argument, GENEXPLAIN checks the command
dictionary to determine if <command> is already installed and, if it is, extracts the command
entry. It also opens and reads the <command>.java source code. Based on contents of these
non-mandatory inputs, GENEXPLAIN then replaces as much of the skeleton with command-
specific information as possible. Here's how GENEXPLAIN works:

1. When <command> is supplied, the {command name} field in the skeleton is replaced by
uppercased <command>.

2. When the command in installed already, the dictionary entry supplies the following additional

information:

a. Full command name, which is used in lieu of <command> if <command> is an
abbreviation.

b. Abbreviation point, which is revealed by showing mandatory characters of the full

command name in uppercase and the remaining characters in lower case.

c. Command type, which replaces {command type} field in skeleton.

d. Positional parameter count, which is used to create the correct number of positional

parameter description lines in the skeleton and placeholders in the command syntax
synopsis. Ellipses ("...") identify commands that have a variable number of positional
parameters.

e. Distinction between labelled and unlabelled positional parameters. The {parameter} field

for unlabelled positional parameters is replaced by <parameter {n}>, where {n} is the
ordinal position. The {parameter} field for labelled parameters is replaced by the
upppercased label name.

 NOTE...code and .cnf file in release 1.5.3 are inconsistent with regard to the possibility of

and support for unlabelled positional parameters. If it is decided not to support them,
explain file generation is simplied.

f. Positional parameter default values, which are used to replace the {default value} fields in

positional parameter description lines or to change the entire [default value is...] phrase
with [no default]. ([no default] and [required parameter] conditions are not distinguished
in the dictionary.)

GENEXPLAIN automatically writes two output files to the ../sys/exp folder. These files are
<full command name>.exp, which contains explain file text, and <full command name>.java,
which defines the pro forma Java interface that links <full command name>.exp. Existing files
are renamed <full command name>.exp.save and <full command name>.java.save first, if
necessary.

The following example illustrates the explain file generation rules explained so far. Imagine the
user gives the command

GENEXPLAIN MYCOMM

and the NeXt-Midas dictionary contains the entry

MYCOM*MAND P,4+ ,IN=,,GREEN,TRIES=100,

Based on this information, GENEXPLAIN creates a file named mycommand.exp that starts with
the following content:

The MYCOMmand primitive

MYCOMmand <IN> <parameter 2> <parameter 3> <TRIES>

{action verb} {high-level command description}

Positional Parameters

<IN> {labelled parameter description} [no default]

<parameter 2> {labelless parameter description} [no default]

<parameter 3> {labelless parameter description} [default is GREEN]

<TRIES> {labelled parameter description} [default is 100]

The remainder of the embryonic explain file would contain only skeleton information. If, however,
mycommand.java also existed, GENEXPLAIN would go on to read that file looking for the
following "clues" for additional explain file information:

1. The first "sentence" in the "/** ... */" comment block that gives the Javadocs command

summary replaces

 {action verb} {high-level command description}

2. Statements containing MA.get...() calls are analyzed to detect keyword parameters and

switches. Keywords that match the labels on already determined positional parameters are
ignored.

3. Whether or not a switch/keyword parameter has a default value is inferred from the

MA.get...() calls. In cases where a literal default is supplied in the argument list, it is put into
the explain file. Obviously, there are many ways that defaults might be assigned, and it's not
the goal of GENEXPLAIN to be a comprehensive code analyzer. A future enhancement of
this command could be to detect things like a default value supplied through an initialized
variable rather than literal argument in a MA.get...() call.

4. Command-specific messages recognized by primitive commands are determined by

analyzing processMessage(), if it exists, to find various string comparison operations
performed on the name field of this method's Message argument. For example,
Message.name.equals(...) and Message.name.startsWith(...) are commonly used in
primitives to detect recognized messages.

Explain file generation for installed macro commands would need to be different. GENEXPLAIN
would read the mycommand.mm file and check for common command constructs. For example,
command-specific messages recognized by macro commands are determined by the
processMessage procedure, if it exists, to find various string comparison operations performed
on the macro's msg.name field. Most often, the macro contains commands like

(else)if msg.name eqs ...

to detect recognized messages.

To keep GENEXPLAIN from getting too complicated, the description of semantics of and data
accompanying messages would be written manually.Similarly, the command methods truly
intended for public access should be identified and documented by hand to avoid deluging the
user with exhaustive information at the expense of clarity. Human intelligence is also required to
make the associations appropriate to the See Also section.

